Aeolus to TurbAero Transfer Link

Aeolus Transfer Link

 The Transfer Link automatically converts an *Aeolus* meanline model into an initial throughflow model for *TurbAero/AxTurb* using experienced-based geometry assumptions

Aeolus input data Excel file:

	0.17	t Page										_
_	C47		fx fx							1		_
▲ A	В	С	D	E F	G	Н	1	J	К	L	М	
	ERATING	COND	ITIONS	N	OZZLE & BLADE	INPUTS						
3 P	arameter	Units	Value		Parameter	units	6	6	7	7	8	
4 T	ïtle	-	CL55 7-Stage	HP Unit	Stage_Number	-	1	1	2	2	3	
5 C	Customer	-			Component Name	-	inlet nozzle	1st Blade	2nd Nozzle	2nd Blade	3rd Nozzle	3rd E
6 L	ocation	-			Component Type	-	nozzle	blade	nozzle	blade	nozzle	blade
7 F	luid	-	STEAM	LE	geometry							3rd E blade
3 S	ipeed	rpm	5033		Rt.in	inches	13.225	13.275	13.68	13.73	13.9	
Inlet	Flange Conditio	ns			Rh.in	inches	12.405	12.375	12.78	12.75	12.78	
0 D)iameter	inches	10		BetaB.in	Degrees	90	29	90	27	90	
1 P	00	psia	145		Rle	inches	0.212	0.012	0.214	0.015	0.258	
2 T	00	Deg F	356.1		Wedge_Ang.in	Degrees	42	5	42	12	42	
3 L	oss	-	0.030		Rshaft.in	inches	6.5	6.5	6.5	6.5	6.5	
4 Exha	ust Flange Con	ditions										
5 D)iameter	inches	20									
6 P	exit	psia	6.5	TE	Geometry							
	lood Loss	-	0		Rt.out	inches	13.225	13.275	13.68	13.73	13.9	
8 Numb	per of Turbine S	itages			Rh.out	inches	12.405	12.375	12.78	12.75	12.78	
9 S	itages	-	7		BetaG(t)	Degrees	12.31	20.49	13.19	22.29	13.03	
0 Mech	nanical Losses				BetaG(m)	Degrees	11.87	20.21	12.73	22.02	12.46	
1 G	Gear	%	100		BetaG(h)	Degrees	11.46	20.16	12.35	21.80	11.91	
2 G	Generator	%	100		R_crv.out	inches	3.4	100	3.4	100	3.4	
3 M	lisc	HP	0		t_te	inches	0.015	0.012	0.015	0.015	0.015	
4 B	learing	HP	0		Wedge_Ang.out	Degrees	6	6	6	6	6	
5 Shaft	End Leakage (Override)			Rshaft.out	inches	6.5	6.125	6.5	6.125	6.5	
6 L	eakage Flow	lbm/hr	0	Axia	al Gaps							
7				Gap		inches	0.160	0.894	0.160	0.732	0.160	
8				Ov	erall Airfoil Geometry				0.527			
9					Roughness	inches	0.000063	0.000063	0.000063	0.000063	0.000063	0.0
0					Number of Airfoils	-	72	212	76	194	76	
1					Number Missing Airfoils	-	0	0	0	0	0	

AxTurb input data file:

🗐 Aeolus_to_AxTurb Transfer Demo for 7-stage Steam Turbine.axt 📃 💷 💻 🔀
File Edit Format View Help
CL55 7-Stage HP Unit
3 1 1 5033 6.50 1 1 0.97 0,1,3,1,0,0,0,"Neq=5033" 1 0 0 0 1 1 0 1 1 28 -14 3 28 -1 0 -1 0 0 0 0 0 0
0. 145.00 356.10 90. 0.0000 -12.405 0.0000 -13.225 1.5480 12.4050 1.5480 13.2250 0.1.7080 -12.3750 1.7080 -13.2750 2.3330 12.3750 2.3330 13.2750 0.3.2270 -12.78 3.2270 -13.68
1 4.8090 12.7800 4.8090 13.6800 0 4.9690 -12.7500 4.9690 -13.7300 2 5.7560 12.7500 5.7560 13.7300 0 6.4880 -12.78 6.4880 -13.9 1 8.0590 12.780 8.0590 13.900 0 8.2190 -12.7500 8.2190 -13.9500 2 9.0060 12.7500 9.0060 13.9500
2 5,0000 1-2,780 5,7800 14,23 1 11,3520 12,7800 11,3520 14,230 0 11,5120 12,7800 11,3520 14,2800 2 12,2990 12,7500 12,2990 14,2800 0 12,7550 -12,78 12,7550 -14,48 1 14,3600 12,7800 14,3600 14,4800 0 14,5400 -12,7500 15,4800 14,5300 2 15,4800 12,7500 15,4800 14,5300 0 16,0230 -12,78 16,0230 -14,89 1 7,6100 12,7800 17,6100 14,8900
1 17.0100 12.7500 17.0100 14.5500 17.7900 12.7500 18.7300 14.9400 2 18.7300 12.7500 18.7300 14.9400 0 19.2410 -12.78 19.2410 -15.26 1 20.8350 12.7800 20.8350 15.8400 0 21.0150 -12.7500 21.0150 -16.2200 2 22.2550 12.7500 22.2550 16.2200 1 72 3 49 -1 1 1.0000 0.4000 0.2000 6.5000 0.0500 12.115 12.3150 0.0150
$\begin{array}{c} 1,0000&0.4000&0.2006&0.5000&0.5000&12.119&12.310&0.0130\\ 12,4050&90.000&11.870&2.0560&0.5770&0.0150&0.2941\\ 13,2250&90.000&11.870&2.0560&0.5770&0.0150&0.2941\\ 13,2250&90.000&12.310&2.0560&0.5770&0.0150&0.2941\\ 2&76&3&4&-1&1\\ 1.0000&0.5625&0.2813&6.5000&0.0600&12.565&12.6900&0.0150\\ \end{array}$
4 III +
Ln 1, Col 1

Aeolus Turbine Preliminary Design & Analysis

Aeolus is an experienced-based, preliminary design tool coupled with a rigorous performance analysis.

This two-part system can design & analyze flow paths for many types of axial turbines, ranging from small waste heat expanders to large power gen units.

Program Capabilities:

- Any number of stages, impulse or reaction type designs
- Real gas properties, supercritical fluids & wet steam with industry standard databases: NIST RefProp and ASME '97
- Partial admission, Curtis stages, impulse and reaction designs
- Extractions/bleeds/inductions, double-flow stages
- Seal leakages, blade forces and axial thrust loads
- Supersonic expanding nozzles, including drilled (axisymmetric)
- AMDC based loss component analysis, refined by Kacker & Okapuu (Ref. 1) and similar to that in *TurbAero* (Refs. 2 & 3).

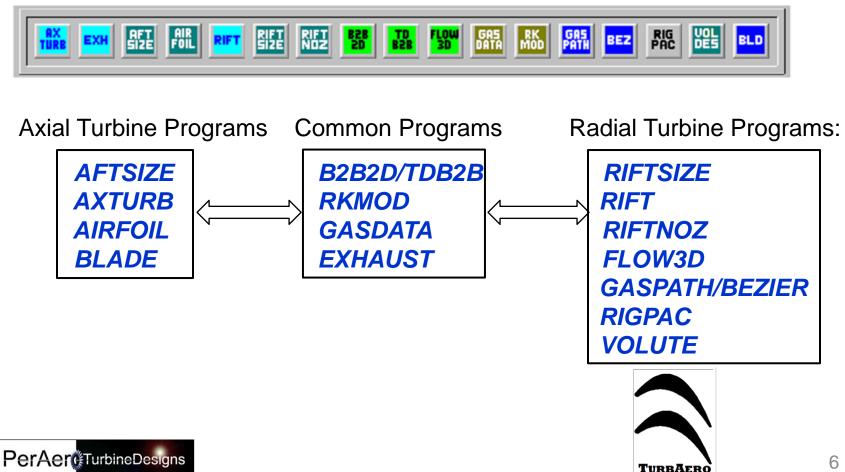
Aeolus Preliminary Design Tool

The *Flow Path* Design tool is a useful complement to *TurbAero* in several important areas:

- preliminary sizing & optimization of multi-stage flow paths to establish:
 - flow path radii at hub & tip
 - inlet and exit (gauging) angles for all nozzles & blades
 - airfoil geometry parameters (no. of blades, chord, axial width, max. thickness, trailing edge thickness, clearances
- graphical displays of design parameters to aid the optimization process
- industry standard fluid properties:
 - Steam (ASME '97) and real gases (NIST RefProp)
- Excel based input and output sheets for convenience in entering data, reviewing results and creating output plots

Aeolus for Performance Analysis

The *Meanline Performance* analysis is a useful complement to *TurbAero* in several important areas:


- Extended capabilities for steam turbines:
 - supersonic flows (including drilled nozzles)
 - extractions, inductions, double flow stages
 - seal leakages & axial thrust loads
 - converged solutions for a much larger number of stages
 Ref 4 compares results with AxStream[™] for a 17-stage steam turbine
- Graphical output and industry standard fluid properties
- Similar loss component analysis as *TurbAero/AxTurb* (Ref. 2), allowing for a close comparison of results between *Aeolus* and *AxTurb*.
- Automatic creation of all input data for AxTurb

PerAeroTurbineDesigns

Overview of TurbAero Design System

TurbAero is a software system comprised of 17 different axial & radial turbine aero design and analysis programs (Refs. 2 & 3)

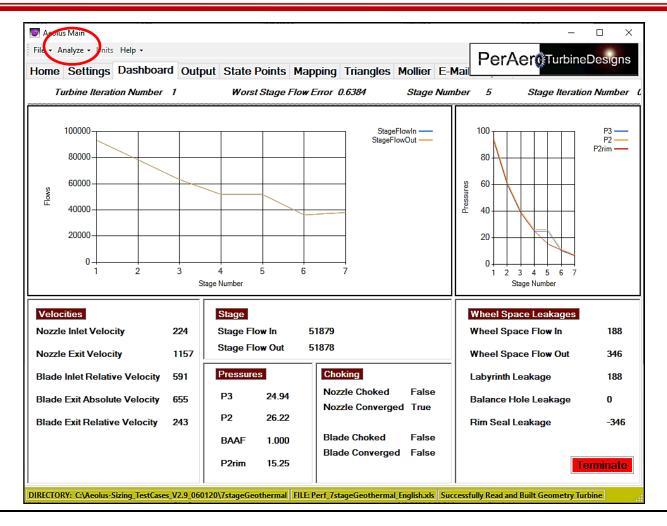
AxTurb Description

AxTurb is the throughflow analysis module for TurbAero.

AxTurb Capabilities:

- 2D throughflow analysis for axial turbines based on a streamline curvature approach with full radial equilibrium
- Subsonic to transonic flows including multiple choked rows
- Very good convergence abilities for smaller number of stages (< 10) and subsonic/transonic Mach numbers (< 1.2)
- Real gas properties use Aungier's Modified Redlich-Kwong model
- Program theory & loss models are fully documented (Ref. 2)
- Prediction accuracy has been validated with several test cases (Ref. 2)

Aeolus to AxTurb Transfer Demo for a 7-Stage Steam Turbine


Step 1 – Start Aeolus then read in a turbine input file

Step 2 – Run *Aeolus* Meanline Analysis by selecting "Analyze"

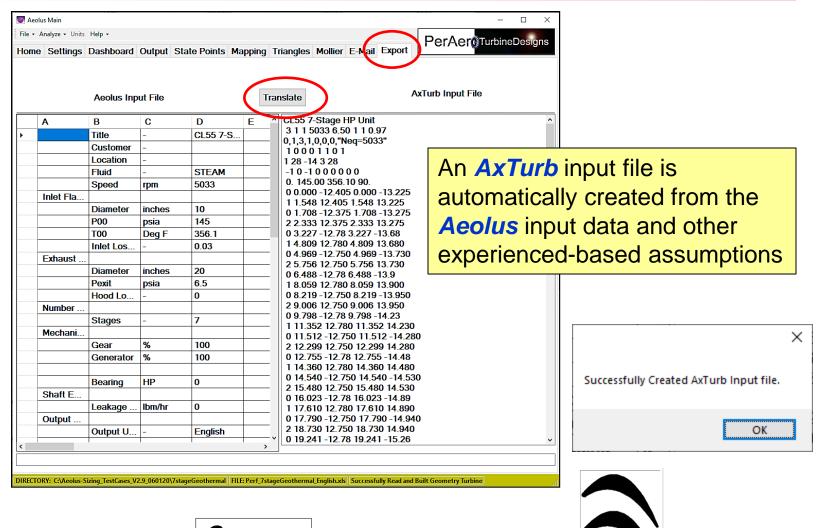
10

Step 2 – After reaching convergence, generate the Excel output file

🗑 Aeolus Main		- 🗆 X
File - Analyze - Units Help -		PerAereTurbineDesigns
Home Settings Dashboard Output State Points Mapping Triangles Mollier	E-Mail Export	T CIACI (TUDILEDesigns
Turbine Convergence History		
Filtered P3(i, 17) 110.028 85.760 65.262 47.680 35.010 21.289 6.501		
Qs(i, 17) 80539.7 80539.8 80539.7 80539.4 80539.2 80734.8 79562.6 Err(i, 17) 0.001391 0.001392 0.001390 0.001386 0.001384 0.003816 0.010758		
Filtered P3(i. 18) 110.029 85.763 65.268 47.690 35.024 21.311 6.501		
Qs(i, 18) 80538.3 80538.3 80538.4 80538.3 80538.3 80652.8 80002.1 Err(i, 18) 0.000749 0.000749 0.000749 0.000749 0.000748 0.002171 0.005914		
Filtered P3(i, 19) 110.029 85.765 65.270 47.694 35.031 21.323 6.501		
Qs(i, 19) 80537.7 80537.7 80537.7 80537.7 80537.7 80537.7 80603.3 80243.2		
Err(i, 19) 0.000406 0.000406 0.000406 0.000406 0.000406 0.001221 0.003252		
Filtered P3(i, 20) 110.030 85.765 65.272 47.696 35.035 21.330 6.501 Qs(i, 20) 80537.3 80537.3 80537.3 80537.3 80537.3 80537.3 80537.4 80374.9		
Err(i, 20) 0.000221 0.000221 0.000221 0.000221 0.000221 0.000690 0.001797		
*** CONVERGED Turbine Flow Balance: 6/20/2020 4:04:13 PM ***		~
	No star of	
Summary Output Generate C	Julpul	
Description Value Unit		
Net Efficiency 0.749		
Inlet Flow 80,588 Ibm/hr		
Net Shaft Output 5,140 HP		
Driven Output 5,140 HP		
Convergence Plot		
DIRECTORY: C:\Aeolus-Sizing TestCases V2.9 060120\7stageGeothermal FILE: Perf 7stageGeothermal English.xl	Successfully Read and	Built Geometry Turbine

View Graphical Results if Desired (optional)

Stage Velocity Triangles


🞯 Aeolus Main _ 🞯 Aeolus Main \times × File - Analyze - Units Help -File • Analyze • Units Help • PerAeroTurbineDesigns PerAereTurbineDesigns Home Settings Dashboard Output State Points Mapping Triangles Mollier Home Settings Dashboard Output State Points Mapping Triangles Mollier Name Descr Value Unit tage Expansion Line Turbine Expansion Line Nozzle Inlet Flow Angle -48.96 deg Nozzle Inlet Abs Flow Velocity 249.74 ft/sec 1200 1200 C1x Nozzle Inlet Axial Flow Velocity 163.98 P01 ----ft/sec Pe_1 Pe_2 Pe_3 Pe_4 Pe_5 Pe_6 Pe_6 Pe_5 Pe_7 Pexh S0 \$1 \$23 \$2 \$31 \$2 \$32 \$34 \$55 \$6 \$77 Sat 1190 C1t Nozzle Inlet Tang Flow Velocity -188.37 ft/sec 1180 a2 Nozzle Exit Flow Angle 76.92 deg 56.94 62 Blade Inlet Relative Flow Angle dea 1170 1180 C2 Nozzle Exit Abs Flow Velocity 936.15 ft/sec 1160 C2x Nozzle Exit Axial Flow Velocity 211.9 ft/sec 1150 C2 911.85 Nozzle Exit Tang Flow Velocity ft/sec C3x = W3: Blade Inlet Relative Abs Flow Velocity W2 388.4 ft/sec 1140 C2x = W2x 1160 W2x Blade Inlet Relative Axial Flow Velocity 211.9 ft/sec 1130 W2t Blade Inlet Relative Tang Flow Velocity 325.5 ft/sec 1120 112 Wheel Inlet Tang Velocity 586 35 ft/sec 1110 α3 Blade Exit Flow Angle -41.74 deg W2t β3 Blade Exit Relative Flow Angle 67.46 deq 1100 1140 W3 Blade Fxt Relative Abs Flow Velocity 5174 ft/sec 1090 W3x Blade Exit Relative Axial Flow Velocity 198.34 ft/sec 1080 U2 W3t 477.88 Blade Exit Relative Tang Flow Velocity ft/sec C3 1070 Blade Exit Abs Flow Velocity 226.07 ft/sec 1120 C3x Blade Exit Axial Flow Velocity 198.34 ft/sec 1060 C3t Blade Exit Tang Flow Velocity -108.47 ft/sec 1050 U3 Wheel Exit Tang Velocity 586.35 ft/sec 1040 1100 -1030 1.57 1.58 1.59 1.6 1020-1 58 1.6 1.62 1.56 1 64 1 6 1.61 1.57 1.59 1.63 1.65 Select Stage 3 Select Stage 3 Refresh (Entropy - Btu / (Ibm * R DIRECTORY: C:\Aeolus-Sizing_TestCases_V2.9_060120\7stageGeothermal FILE: Perf_7stageGeothermal_English.xls DIRECTORY: C:\Aeolus-Sizing_TestCases_V2.9_060120\7stageGeothermal FILE: Perf_7stageGeothermal_English.xls

Thermo State Points & Expansion Line

Step 3 – Select 'Export' Menu then 'Translate'

Step 4 – Start AxTurb Then Read in the New Input File

All input data requirements have been transferred from *Aeolus*

	Inlet Swi	rl Option	Speed Opt	ion								
t Static Pressure			Neq	¥			ordinate (in) ordinate (in)					
sture Loss Option		H-Wall Option		um Option			ordinate (in)					
ow Moisture Loss		· · · · · · · ·	Include (Curvature 💌	Shrou	d Radial Co	ordinate (in)	= 13.225				
or Construction phragm-Disk Style		tion Option face Finish 🔻	Tulat 17-1	ve Pr = 0.97								
ut = 6.5	Weg/W (or			es (Odd) = 3			tion Data Cur					
= 5033	Neq/N (or			C = 1			dial Coord Ax		ontour ·			
		-/ -		-	None	0.0000	12.4050 12.4050	0.0000	13.2250 13.2250			
Thiot Fl	ow Profile (Chec	k To Enton Stat	ic Progenzo)		zzle 1 None	1.5480	12.3750	1.5480 1.7080	13.2250			
inited if		k To Enter Total			otor 1 None	2.3330	12.3750	2.3330 3.2270	13.2750			
% Passage	Total	Total			zzle 2	4.8090	12.7800	4.8090	13.6800			
Height	Pressure 145	Temperatur		ngle	None otor 2	4.9690 5.7560	12.7500 12.7500	4.9690 5.7560	13.7300 13.7300			
U	145	356.1	90		None	6.4880	12.7800	6.4880	13.9000			
					zzle 3 None	8.0590 8.2190	12.7800 12.7500	8.0590 8.2190	13.9000 13.9500			
					otor 3	9.0060	12.7500	9.0060	13.9500			
					None	9.7980	12.7800	9.7980	14.2300			
								11 2520				
Units: psi, de	g F. ft/sec. lbm	1/hr, cfm, btu/ll	lbm, deg with t	tangent	zzle 4 None	11.3520 11.5120	12.7800 12.7500	11.3520 11.5120	14.2300 14.2800			
Units: psi, de	g F, ft/sec, lbm	n/hr, cfm, btu/ll	lbm, deg with t	tangent	zzle 4 None otor 4	11.3520 11.5120 12.2990	12.7500 12.7500	11.5120 12.2990	14.2800 14.2800			
Units: psi, de	g F, ft/sec, lbm	a/hr, cfm, btu/ll	lbm, deg with t	tangent	zzle 4 None otor 4 None	11.3520 11.5120 12.2990 12.7550	12.7500	11.5120 12.2990 12.7550	14.2800			
Units: psi, de	g F, ft/sec, lbm	n/hr, cfm, btu/ll	lbm, deg with t		zzle 4 None otor 4 None Blade Row	11.3520 11.5120 12.2990 12.7550	12.7500 12.7500 12.7800	11.5120 12.2990 12.7550 No.	14.2800 14.2800	Blade Shro	oud Type	
Units: psi, de	No.	n/hr, cfm, btu/ll	lbm, deg with t		zzle 4 None otor 4 None Blade Row Rotor	11.3520 11.5120 12.2990 12.7550 Type	12.7500 12.7500 12.7800	11.5120 12.2990 12.7550	14.2800 14.2800	Shrouded		
		n/hr, cfm, btu/ll	lbm, deg with t		zzle 4 None otor 4 None Blade Row Rotor No. Of	11.3520 11.5120 12.2990 12.7550 Type Blades (>	12.7500 12.7500 12.7800	11.5120 12.2990 12.7550 No.	14.2800 14.2800	Shrouded Lashing W	lire Diameter	
ade Row Type	No.	n/hr, cfm, btu/ll			zzle 4 None botor 4 None Blade Row Rotor No. Of No. Of	11.3520 11.5120 12.2990 12.7550 Type Blades (> Lashing Wi	12.7500 12.7500 12.7800 (12.7800) (12.7800) (12.7800) (12.7800) (12.7800) (12.7500) (1	11.5120 12.2990 12.7550 No.	14.2800 14.2800	Shrouded Lashing W Loss	'ire Diameter Scale Factor	= 0.667
ade Row Type pozzle No. Of Blades (> (Optional) Admissi	No. 1 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	n/hr, cfm, btu/ll	(Optional) No Loss Sci	0. Of Arcs = 1 ale Factor = 0	zzle 4 None otor 4 None Blade Row Rotor No. Of No. Of Shroud Ba	11.3520 11.5120 12.2990 12.7550 Type Blades (> Lashing Wi	12.7500 12.7500 12.7800 • 1) = 212 res = 0 nnce = 1.25	11.5120 12.2990 12.7550 No.	14.2800 14.2800	Shrouded Lashing W Loss RMS Su	Vire Diameter Scale Factor rface Finish	= 0.667 = 0.000063
ade Row Type Jozzle No. Of Blades (> (Optional) Admissi Shaft Base Clearan	No. 1 = 72 ce = 0.4	ı/hr, cfm, btu/ll	(Optional) No Loss Sci	0. Of Arcs = 1	zzle 4 None otor 4 None Blade Row Rotor No. Of Shroud Ba No. Of 2	11.3520 11.5120 12.2990 12.7550 Type Blades (> Lashing Wi ase Cleara Fip Seal F	12.7500 12.7500 12.7800 • 1) = 212 res = 0 nce = 1.25 'ins = 1	11.5120 12.2990 12.7550 No.	14.2800 14.2800	Shrouded Lashing W Loss RMS Su Fraction	Vire Diameter Scale Factor Inface Finish al Shielding	= 0.667 = 0.000063 = 0
ade Row Type 5221e No. Of Blades (> (Optional) Admissi Shaft Base Clearan . Of Shaft Seal Fi	No. $1 = \frac{12}{1}$ on = 1 ce = 0.4 ng = 49	ı/hr, cfm, btu/ll	(Optional) No Loss Sci	0. Of Arcs = 1 ale Factor = 0	zzle 4 None btor 4 None Blade Row Rotor No. 0f Shroud Ba No. 0f 2 Shroud Ba	11.3520 11.5120 12.2990 12.7550 Type Blades (> Lashing Wi ase Cleara Fip Seal Pi ip Seal Pi	12.7500 12.7500 12.7800 • 1) = 212 .res = 0 .nce = 1.25 .rins = 1 .tch =	11.5120 12.2990 12.7550	14.2800 14.2800	Shrouded Lashing W Loss RMS Su Fraction No. Of B	lire Diameter Scale Factor Inface Finish al Shielding Balance Holes	= 0.667 = 0.000063 = 0 = 0
ade Row Type Dzzle No. Of Blades (> (Optional) Admissi Shaft Base Clearan 0. Of Shaft Seal Fit Shaft Seal Pit	No. 1 $\frac{1}{2}$ 1 $\frac{1}{2}$ 1) = 72 on = 1 cc = 0.4 ns = 49 ch = 0.2	ı/hr, cfm, btu/ll	(Optional) No Loss Sci	0. Of Arcs = 1 ale Factor = 0	Ezle 4 None Blade Row Rotor No. Of Shroud B No. Of T Tip	11.3520 11.5120 12.2990 12.7550 Type Blades (> Lashing Wi ase Clearz Fip Seal Fi p Seal Pi p Seal Rac	12.7500 12.7500 12.7800 • 1) = 212 res = 0 nnce = 1.25 • ins = 1 t.tch = lius = 13.32	11.5120 12.2990 12.7550	14.2800 14.2800	Shrouded Lashing W Loss RMS Su Fraction No. Of B Balance H	fire Diameter Scale Factor Inface Finish al Shielding Balance Holes Ole Diameter	= 0.667 = 0.000063 = 0 = 0 = 1
ade Row Type bzzle No. Of Blades (> (Optional) Admissi Shaft Base Clearan . Of Shaft Seal Fi Shaft Seal Fi Shaft Seal Radi	No. $1 = \frac{72}{1}$ on = 1 ce = 0.4 ns = 49 ch = 0.2 us = 6.5	ı/hr, cfm, btu/ll	(Optional) No Loss Sci	0. Of Arcs = 1 ale Factor = 0	Blade Row Rone Blade Row Rotor No. Of J Shroud Ba No. Of J TT Tip Second	11.3520 11.5120 12.2990 12.7550 Type Blades (> Lashing Wi ase Clearas Fip Seal Pi p Seal Pi p Seal Rac eal Fin Wi	$12.7500 \\ 12.7500 \\ 12.7800 \\ \hline \\ 1) = \frac{212}{212} \\ res = 0 \\ nnce = 1.25 \\ rins = 1 \\ 1.25 \\ rins = 1 \\ 1.33 \\ dth = 0.013 \\ rins = 1 \\ 0.013 \\ rins = 1 \\ rins =$	11.5120 12.2990 12.7550	14.2800 14.2800	Shrouded Lashing W Loss RMS Su Fraction No. Of B Balance H	fire Diameter Scale Factor rface Finish al Shielding alance Holes ole Diameter Shaft Radius	= 0.667 = 0.000063 = 0 = 0 =
ade Row Type Dzzle No. Of Blades (> (Optional) Admissi Shaft Base Clearan 0. Of Shaft Seal Fit Shaft Seal Pit	No. 1) = 72 on = 1 ce = 0.4 ns = 49 ch = 0.2 uus = 6.5 ith = 0.015	Whr, cfm, btu/ll	(Optional) No Loss Sci	0. Of Arcs = 1 ale Factor = 0	Reter 4 None btor 4 None Blade Row Rotor No. Of Shroud Ba No. Of 1 Shroud Ba No. Of 2 Ti Tip 5e Tip 5e	11.3520 11.5120 12.2990 12.7550 Type Blades () Lashing Wi ase Cleara Fip Seal Fi p Seal Rad p Seal Rad eal Fin Wi eal Cleara	12.7500 12.7500 12.7800 10.780 100	11.5120 12.2990 12.7550	14.2800 14.2800	Shrouded Lashing W Loss RMS Su Fraction No. Of B Balance H	fire Diameter Scale Factor Inface Finish al Shielding Balance Holes Ole Diameter	= 0.667 = 0.000063 = 0 = 0 =
ade Row Type Dzzle No. Of Blades (> (Optional) Admissi Shaft Base Clearan . Of Shaft Seal Fit Shaft Seal Fit Shaft Seal Radi Shaft Seal Fin Wid	No. 1) = 72 on = 1 cc = 0.4 ns = 49 ch = 0.2 us = 6.5 th = 0.015 cc = 0	ı/hr, cfm, btu/ll	(Optional) No Loss Sc. RMS Surfa	0. Of Arcs = 1 ale Factor = 0	Rotor 4 No. of 1 Shroud Ba No. of 1 Shroud Ba No. of 2 Ti Tip 56 Throat Ba	11.3520 11.5120 12.2990 12.7550 Type Blades (> Lashing Wi ase Cleara Fip Seal Fi p Seal Rad p Seal Rad p Seal Rad ceal Fin Wi eal Cleara lockage (<	12.7500 12.7500 12.78000 12.7800 12.7800 12.7800 12.78	11.5120 12.2990 12.7550 No. 1 :	14.2800 14.2800 14.4800	Shrouded Lashing W Loss RMS Su Fraction No. Of B Balance H Ave. Di	Fire Diameter Scale Factor rface Finish al Shielding talance Holes iole Diameter Shaft Radius sk Axial Gap	= 0.667 = 0.000063 = 0 = 0 = 6.5 = 0.527
ade Row Type ozzle No. Of Blades (> (Optional) Admissi Shaft Base Clearan . Of Shaft Seal Pit Shaft Seal Pit Shaft Seal Radi Shaft Seal Fin Wid Shaft Seal Clearan	No. 1) = 72 on = 1 cc = 0.4 ns = 49 ch = 0.2 us = 6.5 th = 0.015 cc = 0 1) = 0	u/hr, cfm, btu/ll	(Optional) No Loss Sc. RMS Surfa	o. Of Arcs = 1 ale Factor = 0 ace Finish = 0	Rotor 4 No. Of 1 Shroud Ba No. Of 1 Shroud Ba No. Of 2 Ti Tip Sa Tip Sa Throat Ba Radius	11.3520 11.5120 12.2990 12.7550 Type Blades () Lashing Wi ase Clears Fip Seal P ip Seal P ip Seal P ip Seal P ip Seal P in Sea P in Sea	12.7500 12.7500 12.7800 12.7800 (c) 1) = 212 (c) 12 = 0 (c) 12 = 0	11.5120 12.2990 12.7550 No. 1 •	14.2800 14.2800 14.4800	Shrouded Lashing W Loss RMS Su Fraction No. Of B Balance H Ave. Di Tmax	fire Diameter Scale Factor Inface Finish al Shielding Balance Holes Hole Diameter Shaft Radius sk Axial Gap T2	= 0.667 = 0.000063 = 0 = 0 = 6.5 = 0.527
ade Row Type Dzzle No. Of Blades (> (Optional) Admissi Shaft Base Clearan . Of Shaft Seal Pit Shaft Seal Pit Shaft Seal Radi Shaft Seal Fin Wid Shaft Seal Clearan hroat Blockage (<	No. 1) = 72 on = 1 cc = 0.4 ns = 49 ch = 0.2 us = 6.5 ith = 0.015 cc = 0 1) = 0		(Optional) No Loss Sc. RMS Surf. Exit Area/Th	o. Of Arcs = 1 ale Factor = 0 ace Finish = 0 hroat Area = 0	Ezle 4 None Blade Row Rotor No. Of J Shroud Ba No. Of J Shroud Ba Tip Se Tip Se Throat B Radius 12.375	11.3520 11.5120 12.2990 12.7550 Type Blades () Lashing Wi ase Clears Fip Seal Fi ip Seal Pi o Seal Rad eal Fin Wi eal Clears lockage (< Bet 29	12.7500 12.7500 12.780 10.780 10.780 10.780 10.780 10.780 10.790 10.990 10.9000 10.90000 10.90000 10.90000 10.90000 10.90000 10.90000 10.90000 10.90000 10.90000 10.90000000000	11.5120 12.2990 12.7550 No. 1 • 25 5 5 8etaG 16	14.2800 14.2800 14.4800 Chord 0.626	Shrouded Lashing W Loss RMS Su Fraction No. Of B Balance H Ave. Di Tmax 0.225	fire Diameter Scale Factor rface Finish al Shielding Balance Holes Iole Diameter Shaft Radius sk Axial Gap T2 0.012	= 0.667 = 0.000063 = 0 = 0 = 6.5 = 0.527 1/Ro 0.01
ade Row Type Dozle No. Of Blades (> (Optional) Admissi Shaft Base Clearan Shaft Seal Fit Shaft Seal Fin Wid Shaft Seal Fin Wid Shaft Seal Clearan hroat Blockage (< Radius Beta	No. 1 1 11 1 11 11 11 11 11 11 1 11 1 11 1 1 1 1 1 1 1 1 1	Chord	(Optional) No Loss Sc RMS Surf. Exit Area/TJ Tmax	0. Of Arcs = 1 ale Factor = 0 ace Finish = 0 hroat Area = 0 T2	Rotor 4 No. Of 1 Shroud Ba No. Of 1 Shroud Ba No. Of 2 Ti Tip Sa Tip Sa Throat Ba Radius	11.3520 11.5120 12.2990 12.7550 Type Blades () Lashing Wi ase Clears Fip Seal P ip Seal P ip Seal P ip Seal P ip Seal P in Sea P in Sea	12.7500 12.7500 12.7800 12.7800 (c) 1) = 212 (c) 12 = 0 (c) 12 = 0	11.5120 12.2990 12.7550 No. 1 25 5 5 8 BetaG 16 21	14.2800 14.2800 14.4800	Shrouded Lashing W Loss RMS Su Fraction No. Of B Balance H Ave. Di Tmax	fire Diameter Scale Factor Inface Finish al Shielding Balance Holes Hole Diameter Shaft Radius sk Axial Gap T2	= 0.667 = 0.000063 = 0 = 0 = 6.5 = 0.527

PerAercTurbineDesigns

Step 5 – Run *AxTurb* then compare results with *Aeolus*

Comparison of Overall Performance									
	Aeolus	<u>AxTurb</u>							
Efficiency	74.9%	73.0%							
Power, HP	5,140	4,891							
Flow, lb/hr	80,588	78,680							

Aeolus output

OVERALL TURBINE PE	RFORMA	NCE	
POWER OUTPUT &	LOSSES		TOTAL TO STATIC
Total Work Done	btu/lbm	162.49	Net Efficiency (Effic_ts) 0.7488
Gross Aero Power	hp	5518.6	Pressure Ratio (PR_ts) 22.308
Partial Admission Loss	hp	0.0	Available Energy (DeltaH_is_ts) btu/lbm 216.76
DiskFriction Loss	hp	15.7	Velocity Ratio (U/Co_avg_ts) 0.504
Shroud Friction Loss	hp	0.7	
Shaft Output	hp	5,140.4	TOTAL TO TOTAL
Bearing Loss	hp	0.0	Net Efficiency (Effic_tt) 0.7778
Net Shaft Output	hp	5,140.4	Pressure Ratio (PR_tt) 20.417
Output to Driven Equipment	hp	5,140.4	Available Energy (DeltaH_is_tt) btu/lbm 208.66
Net Steam Rate	lbm/hp-hr	15.68	Velocity Ratio (U/Co_avg_tt) 0.520
Net Axial Thrust	lbf	7,974	

AxTurb output

问 Perf_7stageGeothermal_English-axt — 🛛	×	
File Edit Format View Help		
Inlet Governor Valve Pressure Ratio = 0.97 Inlet Admission = 100 % Inlet Mass Flow = 78679.96 lbm/hr Inlet Total Pressure = 140.65 psi Inlet Total Enthalpy = 343.81 btu/lbm Inlet Total Temperature = 355.15 deg F Rotation Speed = 5033 rpm Discharge Mass Flow = 78679.96 lbm/hr PERFORMANCE AT THE LAST STAGE EXIT		< · · · · · · · · · · · · · · · · · · ·
Total Pressure = 7.765 psi Static Pressure = 6.501 psi Total Enthalpy = 177.39 btu/lbm Total Enthalpy Drop = 166.42 btu/lbm Total Temperature = 205.61 deg F Total Temperature Ratio = 1.226 Total-To-Total Pressure Ratio = 18.67 Total-To-Static Pressure Ratio = 22.3 Total-To-Total Adiabatic Efficiency = 0.7737 Total-To-Total Polytropic Efficiency = 0.7298 Total-To-Static Polytropic Efficiency = 0.7088 Total-To-Static Polytropic Efficiency = 0.7088 Total Power = 5146.03 Hp		
<	>	

References

- 1. Kacker, SC, and Okapuu, U, 1981, "A Meanline Prediction Method for Axial Flow Turbine Efficiency," ASME J Eng. for Power, Vol. 103, No. 1.
- 2. Aungier, R. H., *Turbine Aerodynamics: Axial-Flow and Radial-Inflow Turbine Design and Analysis*, ASME Press, New York, 2006
- 3. *TurbAero* software system developed by Mr. Ron Aungier and now owned by Flexware Inc., <u>https://www.turbo-aero.com/turbaero</u>
- Perera, J V, "Aeolus and AxStream[™] Performance Calculations for a 22 MW Steam Turbine", 2016